

ICAR'05 Workshop on Navigation and Manipulation for Mars Rovers

Approach and Instrument Placement Validation

Won S. Kim

Jet Propulsion Laboratory
California Institute of Technology
July 17, 2005

(818)354-5047 Won.S.Kim@jpl.nasa.gov

Approach and Instrument Placement Validation

Jet Propulsion Laboratory

Objectives:

- Provide an experimentally validated single-sol instrument placement capability to MSL, where the science target is up to 10 m away (background: MER takes minimum 3 sols)
- Provide technology providers with early feedback for improvements

Problem Statement: State of Art

Jet Propulsion Laboratory

MER Baseline: 3-sol instrument placement from 10 m away

MSL Enhancement: 1-sol instrument placement from 10m away

- 20% to 25% increase in science return
 - 8 to 10 sols/rock will be reduced to 6 to 8 sols/rock

Single-Sol Instrument Placement Technologies

Jet Propulsion Laboratory

Validate: Stereo vision

July 17, 2005

Validate: Manipulation

Technical Approach / System Description

Jet Propulsion Laboratory

Validation approach

- Component-level white-box validation
- Provide technology providers with feedback for improvements and bug fixes

2D/3D visual tracker system for target approach

Navcam Tracking Example – good target with good lighting

Jet Propulsion Laboratory

9.6m

4.7m

7.3m

2.1m

Pancam Tracking Example -**Good Target with Good Lighting**

Jet Propulsion Laboratory

9.6m

4.6m

7.2*m*

2.8m

Pancam Tracking Example -**Good Target with Good Lighting**

Jet Propulsion Laboratory

Movie

Pancam Tracking Example – Bad Target with Background Change

Jet Propulsion Laboratory

10.8m

10.3m

9.9m

9.3m

Navcam/Pancam Tracking Examples – Lighting/Reflection/Shadow Change

Jet Propulsion Laboratory

Nav 9.2m

Pan ⇒ 8.7m

Pan 3.5*m*

Computing Target Approach Accuracy

Jet Propulsion Laboratory

- Without visual target tracking
 - -3σ approach error = 22.2 cm using Pancam and visual odometry (2% error)

$$\Delta R_{no_tracking,10m} = \sqrt{\Delta R_{stereo,10m}^2 + \Delta R_{nav,10m}^2}$$

- With visual target tracking
 - -3σ approach error = 1.5 cm at R= 1 m distance using Pancam initially with subsequent camera handoffs to Navcam and Hazcam $\Delta R = \frac{R^2}{f_{s2} B_2} (\Delta d \frac{f_{s2}}{f_{s1}}) = \frac{R^2}{f_{s1} B_2} \Delta d$

$$\Delta R = \frac{R^2}{f_{s2} B_2} (\Delta d \frac{f_{s2}}{f_{s1}}) = \frac{R^2}{f_{s1} B_2} \Delta d$$

Focal length (1/3" CCD camera)	Field of view angles	Stereo baseline	Stereo range error (3 σ) at 10 m distance	Target approach error (3 σ) with 2% navigation error	Target approach error (30) with ideal visual tracking and camera handoff
16 mm	$17^{\circ} \times 13^{\circ}$	30 cm	9.7 cm	22.2 cm	1.5 cm
6 mm	49° × 37°	20 cm	38.8 cm	43.7 cm	3.9 cm
2.3 mm	113° × 86°	10 cm	202.2 cm	203.2 cm	10.1 cm

Test Plan for 2D/3D Tracker

Jet Propulsion Laboratory

2D/3D Visual Target Tracker System

Validation Method

- Error Budget Model based on component-level white-box approach
- Experimental Test Variables (rover motion step size; straight flat, rocky, or winding path; high-texture or low-texture targets; lighting conditions; software algorithms, configuration, parameter settings)
- Tracking performance metrics (tracking success percentage and tracking error)

Tracking Reliability and Error Budget Model

Jet Propulsion Laboratory

Rover locomotion/navigator	Rover motion changes the target image, affecting the matching performance: • Target image size change • Target image roll, pitch, yaw changes
Rover pose estimator using visual odometer (VO)	 VO estimation error affects active camera control: Rover pose distance error Rover pose orientation error
Target position estimation using stereo vision	Stereo vision triangulation error affects active camera control: • Target position error on image plane
Active camera control to point the fixed-mast to the target (for Pancam and Navcam only)	Fixed-mast pointing errors: • pan/tilt encoder resolution • pan/tilt backlash • mast calibration accuracy
2-D target tracking using normalized cross-correlation, scale, and affine matching	The above active camera control with VO and stereo vision determines the target image displacement, which affects the tracking performance: Tracking success percentage Tracking error
Camera handoff	Handoff success percentageHandoff error

Hypothetical Calculations of Error Budget Model

Jet Propulsion Laboratory

Terrain	Flat	Small rocks	Large rocks
Approach path	straight	straight	winding
Rover motion step size	20 cm	20 cm	20 cm or 10°
Rover locomotion/navigator Size change per frame Pitch/yaw changes	2% at 10m 10% at 2 m -/-	2% at 10 m 10% at 2 m 10°/ –	2% at 10m 10% at 2m 10°/ 10°
VO rover pose ■ Distance and orientation errors (2%)	0.4 cm / 0.1°	0.4 cm / 0.2°	0.4 cm / 0.3°
Target position error on image plane (stereo triangulation)	1 pixel	1 pixel	1 pixel
Pan/tilt (540:1, 16 CPR) encoder resolution and backlash mast calibration accuracy	0.04°	0.04°	0.04°
Overall orientation error for active camera control	0.1°	0.2°	0.3°
Target image displacement between frames Pancam (17° FOV) Navcam (45° FOV) Hazcam (100° FOV) with active gaze	6 pixels 2.3 pixels 1 pixel	12 pixels 4.6 pixels 2 pixels	18 pixels 9.2 pixels 3 pixels
2-D target tracking and camera handoff (tracking percentage and error each step) 1. Pancam for 4 m (from 10 m to 6 m) 2. Handoff from Pancam to Navcam 3. Navcam for 4m (from 6 m to 2 m) 4. Handoff from Navcam to Hazcam 5. Hazcam for 1m (from 2 m to 1 m)	95%; 2 pixels 1 pixel 95%; 3 pixels 1.5 pixels 90%; 2 pixels 1 pixel	90%; 3 pixels 1 pixel 90%; 4 pixels 1.5 pixels 90%; 2.5 pixels 1 pixel	85%; 4 pixels 1 pixel 85%; 5 pixels 1.5 pixels 85%; 3 pixels 1 pixel
Overall single-sol target approach and instrument placement (tracking percentage, pixel error, and placement error)	81%; 3.0 pixels $1\sigma = 2.0 \text{ cm}$ $3\sigma = 6.1 \text{ cm}$	73%; 3.5 pixels $1\sigma = 2.4 \text{ cm}$ $3\sigma = 7.1 \text{ cm}$	61%; 4.0 pixels $1\sigma = 2.7$ cm $3\sigma = 8.1$ cm

Mast Calibration

Jet Propulsion Laboratory

New Mast Calibration Method using Camera Calibration Targets

- Camera calibration targets out on the field
 - More accurate than MER method of using metrology targets on masthead
- We earlier used 7 mast-calibration parameters

mast	mast	mast	mast	mast	pan	tilt
t_{xm}	t_{ym}	t_{zm}	θ_{xm}	$ heta_{\it ym}$	offset	offset

We now use 6 mast-calibration parameters

ma	nst m	nast m	ast m	ast ma	ast ma	st
t_{xt}	$_{n}$	t_{ym} t	t_{zm} θ	$\theta_{xm} \mid \theta_{y}$	θ_z	m

- pan_offset = tilt_offset = 0
- Mast calibration 2D residual rms errors in pixels
 - 1.13 pixels Navcam = 0.85 mrad = 0.05° accuracy

Calib. target positions (3 pancam, 5 navcam)

Total station, calib. target, and Rocky8 rover

Mast Camera Pointing

Jet Propulsion Laboratory

Navcam pointing

- point the mast so that the designated target is at the center of the image
- less than 1.3 pixels rms pointing error over 50 target points tested

Camera Aiming	First Camera-Pointing rms pixel error		Second Camera-Pointing rms pixel error	
Distance	Δx	Δy	Δx	Δy
10 m	0.59	1.22	0.53	0.78
6 m	0.74	1.24	0.60	0.84
2 m	1.26	0.93	0.67	0.92

Pancam pointing

less than 3.3 pixels rms pointing error over 40 target points tested

Camera Aiming		First Camera-Pointing rms pixel error		nera-Pointing kel error
Distance	Δx	Δy	Δx	Δy
10 m	1.50	3.24	1.17	1.80
6 m	1.63	2.92	1.49	2.02

Stereo Range Error Ellipsoids

Jet Propulsion Laboratory

Navcam Stereo Range Error Ellipsoids

- Human integer-pixel matching
 - Down-range disparity error $\sigma_{\text{disp-R}} = 0.54$ pixels
 - Cross-range disparity error $\sigma_{\text{disp-C}}$ = 1.36 pixels
- Stereo sub-pixel correlation matching
 - Down-range disparity error: $\sigma_{\text{disp-R}} = 0.32 \text{ pixels}$
 - Cross-range disparity error: $\sigma_{\text{disp-C}}$ = 1.39 pixels

←Experimentally validated using bricks with reflective-tape targets

Navcam Tracking over Flat Terrain – Camera Pointing Error

Jet Propulsion Laboratory

Camera pointing error

	ΔΧ	ΔΥ
σ	10.1 pixels	10.9 pixels
3σ	30.3 pixels	32.6 pixels

Camera pointing error is mainly due to rover pose estimation error; ΔX due to yaw error and ΔY due to pitch error

Navcam Tracking on Flat Terrain – Metrology vs. Estimator

Jet Propulsion Laboratory

Metrology vs. Wheel Odometer Position

Relative rover pose estimation error

	ΔRoll Error	ΔPitch Error	ΔYaw Error
sigma	0.59 deg	0.62 deg	0.44 deg
3sigma	1.75 deg	1.85 deg	1.32 deg

Camera pointing error depends on the relative rover pose estimation error of each move, not the absolute one.

Metrology vs. Wheel Odometer Yaw

Navcam Tracking over Large Rocks – Camera Pointing Error

Jet Propulsion Laboratory

Camera pointing error

ΔΧ		ΔΥ
σ	54.4 pixels	16.1 pixels
3σ	163.1 pixels	48.3 pixels

Camera pointing error is mainly due to rover pose estimation error; ΔX due to yaw error and ΔY due to pitch error

Navcam Tracking over Large Rocks – Metrology vs. Estimator

6

Roll & Pitch (degrees)

M Pitch

Jet Propulsion Laboratory

Metrology vs. Wheel Odometer Position

E Roll M Roll E Pitch

Relative rover pose estimation error

	ΔRoll Error	ΔPitch Error	ΔYaw Error
sigma	0.80 deg	0.58 deg	2.15 deg
3sigma	2.39 deg	1.74 deg	6.48 deg

Camera pointing error depends on the relative rover pose estimation error of each move, not the absolute one.

Metrology vs. Wheel Odometer Yaw

Vehicle Position from Metrology (meters)

Metrology vs. IMU Roll & Pitch

Iterative Pyramidal Affine Matching 2-D Visual Tracker

Jet Propulsion Laboratory

- Iterative method
 - Successive approximation to the solution

Pyramidal feature matching

Level 1

Level 0

Iterative Pyramidal Affine Matching 2-D Visual Tracker

Jet Propulsion Laboratory

- Higher pyramid levels handled larger image displacements between images
- Pure translation (more reliable)
 followed by affine matching (more accurate) was best
- Average tracking performances were 80% up to 100% with 15x15 window for forward, roll, and yaw camera motions
- Low-texture targets on large rocks needed a larger 29x29 window
- Avoid selecting target windows involving occlusions, two separate rocks, cluttered background, shadow change

Test run examples with the affine 2-D tracker

Beginning image with 65 initial targets selected

End image after 4-m forward camera motion

Close-up of initial image

Close-up of end image after 40° camera roll motion

Normalized Cross-Correlation Matching 2-D Visual Tracker

Jet Propulsion Laboratory

- -Problems with the iterative affine matching
 - Iterative search requires good initial seed: tracking range is rather limited to about 10 pixels for higher reliability or 30 pixels for lower reliability
 - Very sensitive to lighting change
- Normalized cross-correlation
 - Brute-force search: entire image search range with very high reliability
 - More robust to lighting change due to normalization
 - Rover motion step size between tracking images is limited due to target image size change allowing less than 5% change in image size
- -Normalized cross-correlation with scaling
 - Measure the target distance change using stereo triangulation
 - Scale the target template image according to the target distance change
 - Very reliable enabling a large step size (more than 10% image size change) for rover motion

Purely Geometric Camera Handoff

Jet Propulsion Laboratory

Navcam-to-Hazcam handoff error

- Up to ~4 pixels with bias of ~2 pixels
- Bias due to zero-positioning inaccuracy & discrepancy in rover reference frames
- Larger vertical error spread due to significant down-range error propagation

Pancam-to-Navcam handoff error

Up to ~2.5 pixels with bias of ~1.5 pixels

Pancam-to-Navcam handoff error

Navcam-to-Hazcam handoff error

Navcam-to-Hazcam Handoff Refinement

Jet Propulsion Laboratory

Stereo 3-D range based handoff refinement improves the handoff accuracy

Navcam image

1. Construct the hazcam image template by back projection of the navcam image through stereo 3-D range registration

Hazcam image

Red: geometric HO Green: refinement

2. Perform normalized crosscorrelation between the constructed Hazcam template image and the actual image

Off-line Visual Target Tracker

Jet Propulsion Laboratory

- Allows multiple runs using a data set collected from real visual tracker
 - only one target tracking per run with real-time visual tracker
- Different target positions
- Different tracking parameters
- Very efficient and essential for tracking performance validation

FY04-05 Publications

Jet Propulsion Laboratory

- W. S. Kim, R. C. Steinke, R. D. Steele, A. I. Ansar, Camera Calibration and Stereo Vision Technology Validation Report, Revision 1, JPL D-27015, Jan. 2004.
- W. S. Kim, R. C. Steinke, R. D. Steele, 2D Target Tracking Technology Validation Report, JPL D-28523, Apr. 2004.
- W. S. Kim, R. D. Steele, A. I. Ansar, S. Chen, *Test Plan for 2D/3D Visual Target Tracking Validation*, Jul. 2004.
- W. S. Kim, A. I. Ansar, R.D. Steele, "Rover Mast Calibration, Exact Camera Pointing, and Camera Handoff for Visual Target Tracking," IEEE ICAR'05, Jul. 2005.
- W. S. Kim, A. I. Ansar, R.D. Steele, "Stereo Vision Performance Analysis and an Application to Multi-View Target Registration," submitted to IEEE SMC'05, Oct. 2005.

MER Hazcam Tracking

Jet Propulsion Laboratory

Preliminary testing of visual tracking on MER images

- Seven MER Hazcam stereo images of 35-cm step over 2.1 m (CAHVORE model & rover poses given)
- Click images to animate tracking
 - initial seed computed offline by stereo & rover pose
 - : after normalized cross correlation (NCC)
 - : after affine matching
- Larger rocks and smaller steps desirable for tests

Sol 37 Traversal

Rock1 Movie

Rock2 Movie

MER Navcam Tracking

Jet Propulsion Laboratory

From MER downlink report: rover path

MER Navcam Tracking

Jet Propulsion Laboratory

#1, movie

#4

#6

#8